
1

Modular Privacy Flows:
A Design Pattern for
Data Minimization

Haojian Jin
Mar. 29, 2023

2

Bio

Haojian Jin (http://haojianj.in/)

Asst. Prof @ UCSD-HDSI

Data Smith Lab:

We study the security and privacy of data systems by researching the

people who design, implement, and use these systems.

Ph.D. from CMU Human-Computer Interaction Institute

Before Ph.D.: worked at Yahoo Research, ran a startup

3

Permissions

Notice and choice

Informed decisions

4

5

App Stores

[1] Benedict Evans, App stores, trust and anti-trust

“changed how software development worked,
and expanded the number of people who could
comfortably, safely use a computer from a few
hundred million to a few billion.”

6

Technical idea #1

Putting apps in a sandbox

Apps can only do things that Apple allows and
cannot ask (or persuade, or trick) the user for
permission to do ‘dangerous’ things.

- Would this break my phone?
- Would this run my battery down?
- Steal my bank details?

7

Technical idea #2

Distributing software through a centralized app store

8

Technical idea #2

Distributing software through a centralized app store

S.M.T.H.: Send Me to Heaven

9

Issues around idea #1

Putting apps in a sandbox

Apps can only do things that Apple allows and
cannot ask (or persuade, or trick) the user for
permission to do ‘dangerous’ things.

- What are ‘dangerous’ things?
- How can we trust Apple?
- How can we detect if apps trick the user?
- ……

10

Issues around idea #1

After 15 years - still iterating

11

Issues around idea #2

Distributing software through a centralized app store

12

Issues around idea #2

Software often has a cloud component.

13

Linux systems

•Users

•File permissions

14

File permissions

15

Current research focus

Next generation permission system

Permission & Manifest

Privacy (P3P 2.0)
Security (Software

Supply Chain) AI Capability

Modular Privacy
Flows

16

Zoom accesses all your calendar events continuously!

Calendar events that contain
https://zoom.us/xxxxx

https://zoom.us/xxxxx

17

Uber wants to see
all your emails.

18

“Personal data shall be limited to what is
necessary in relation to the purposes for which
they are processed.”

- GDPR, Article 5 (1) (c)

Principle of data minimization

19

“A security architecture should be designed so
that each entity is granted the minimum system
resources and authorizations that the entity needs
to perform its function..”

Principle of least privilege

20

Google APIs - All-or-nothing binary permissions

https://developers.google.com/calendar/api/guides/auth

21

Program data transformation functions using chainable operators

URL-based APIs

Operator-based APIs pullinject filter post

22

A text-based whitelist manifest (i.e., program representation)

!lter

target content: eventdescription
target pattern:

@purpose: The app can access calendar events
which contains a zoom link.
ZoomCalendarIntegration{
 // operator [properties]
 inject[...] -> pull Calendar[...] ->
 !lter [Zoom join link pattern] ->
 post [Zoom events]
}

Operator-based manifest

inject

repeat #: in!nite
interval: 30 mins

pull

end point: xxxxx
token: xxxx

post

destination: www.abc.com
purpose: retrieve video
 conference events

Assembled data processing pipeline

!lter

target content: eventdescription
target pattern:

@purpose: The app can access calendar events
which contains a zoom link.
ZoomCalendarIntegration{
 // operator [properties]
 inject[...] -> pull Calendar[...] ->
 !lter [Zoom join link pattern] ->
 post [Zoom events]
}

Operator-based manifest

inject

repeat #: in!nite
interval: 30 mins

pull

end point: xxxxx
token: xxxx

post

destination: www.abc.com
purpose: retrieve video
 conference events

Assembled data processing pipeline

23

System builders Developers

Offer a set of operators as
the API

Author a manifest by
connecting operatorsExecute the manifest using

preloaded implementations

!lter

target content: eventdescription
target pattern:

@purpose: The app can access calendar events
which contains a zoom link.
ZoomCalendarIntegration{
 // operator [properties]
 inject[...] -> pull Calendar[...] ->
 !lter [Zoom join link pattern] ->
 post [Zoom events]
}

Operator-based manifest

inject

repeat #: in!nite
interval: 30 mins

pull

end point: xxxxx
token: xxxx

post

destination: www.abc.com
purpose: retrieve video
 conference events

Assembled data processing pipeline

24

Talk outline

1. Modular Privacy Flows (MPF) in a Nutshell

2. Why MPF

3. How MPF

4. When and when not MPF

5. Future Work

25

Purpose strings.

arbitrary text,
manually annotated,
hard to validate/assess.

MobiPurpose is a scalable in-lab solution that can index fine-
grained privacy attributes (who, where, what, why) of outgoing
network requests.26 Jin et al. "Why Are They Collecting My Data?": Inferring the Purposes of Network Traffic in Mobile Apps, IMWUT’ 18

……

Intercepted 2 million
unique traffic requests

27

MobiPurpose - network tracing

185k apps

28

Tra!c request snapshot
source app:
 com.inkcreature.predatorfree
connect to host:
 inkcreature.com
server path:
 /_predatorServer/

key-value pairs in request body:
 myLat: 40.4435877
 myLon: -79.9452883

Who?

Where?

Key-value pairs

MobiPurpose - network tracing

29

Tra!c request snapshot
source app:
 com.inkcreature.predatorfree
connect to host:
 inkcreature.com
server path:
 /_predatorServer/

key-value pairs in request body:
 myLat: 40.4435877
 myLon: -79.9452883

2,008,912 unique traffic requests

from 14,910 apps

contacting

12,046 unique domains

302,893 unique URLs

Traffic Data stats

We publish the dataset at:
 http://bit.ly/purposedata

http://bit.ly/purposedata

location

nearby search

30

DATA TYPES DATA PURPOSES EXAMPLES

DATA TYPES

location

nearby search

DATA PURPOSES EXAMPLES

31

location-based
customization

DATA TYPES

location

nearby search

DATA PURPOSES EXAMPLES

32

location-based
customization

ad

analytics

…… ……

33
See the complete taxonomy at:

 http://bit.ly/mobitaxonomy

13 common data collection purposes for location data

http://bit.ly/mobitaxonomy

34 data types

35

Three empirical studies

Large-scale mobile
network tracing[1]

Smart home
applications

[2] Smart city
applications

[3]

[2] Peekaboo, Jin et al., S&P’22

36

77% Smart home apps do not need raw data.

Hello visitor

Sensor Raw Needed data

Noise level 55 db

37

Oversensing

Private Memoirs of a Smart Meter, BuildSys 20

38

Three empirical studies

Large-scale mobile
network tracing[1]

Smart home
applications

[2] Smart city
applications

[3]

[2] Peekaboo, Jin et al., S&P’22

39

76/80 Smart city apps only need aggregated data.

40

New understanding about privacy

arbitrary text
manually annotated
hard to validate/assess

State of
the art

MPF
Enumerable data collection purposes.

Given a purpose, developers do not need raw data.

41

File permissions are insufficient.

42

State of the Art: fine-grained permission manifest

43

State of the Art: User choices

44

The permission granularity dilemma

More fine-grained permissions
→ Better privacy
→ More management burden for users
 Harder learning curve for app developers
 More implementation efforts for system builders

More coarse-grained permissions
→ Worse privacy
→ Oversensing risks
 More users deny data requests
 More complaints for system builders
 Hard to gain trust from users for app developers

45

On-going permission dilemma

46

Talk outline

1. Modular Privacy Flows (MPF) in a Nutshell

2. Why MPF

3. How MPF

4. When and when not MPF

5. Future Work

47

How can Nest prove that they only collect aggregated data?

 developers

68.1°C/Monday
69.2°C/Tuesday
…

Open source?

Jin et al. "Why Are They Collecting My Data?": Inferring the Purposes of Network Traffic in Mobile Apps, IMWUT’ 18[1] Jin et al., Peekaboo: A Hub-Based Approach to Enable Transparency in Data Processing within Smart Homes. S&P’22

48

Program pre-processing functions using chainable operators
A

 fi
xe

d
se

t o
f o

pe
ra

to
rs

49

2. Implement - Peekaboo

A text-based whitelist manifest (i.e., program representation)

How much time does the
user spend on the TV?

@purpose: To measure device engagement.
WeeklyUsageHours{
 // operator [properties]
 inject [weekly] ->
 pull [smart TV driver] ->
 aggregate [sum duration] ->
 post [duration]
}

50

2. Implement - Peekaboo

A trusted runtime with pre-loaded implementations

How much time does the
user spend on the TV?

25 hours

A local hub

A text-based manifest
25 hours

inject
[weekly]

pull
[smart tv]

aggregate
[sum duration]

post
[duration]

@purpose: To measure device engagement.
WeeklyUsageHours{
 // operator [properties]
 inject [weekly] ->
 pull [smart TV driver] ->
 aggregate [sum duration] ->
 post [duration]
}

51

A trusted runtime with pre-loaded, open-source implementations

First party
data sources

Third party
developers

...

Built-in Privacy features

Preloaded operators

Manifest
Manifest

Manifest

Manifest
Manifest

...

Manifests

52

Smart home app store App developers

Programming environment
with operators

@purpose: To measure device engagement.
WeeklyUsageHours{
 // operator [properties]
 inject [weekly] ->
 pull [smart TV driver] ->
 aggregate [sum duration] ->
 post [duration]
}

Manifest

Runtime with preloaded
implementations

53

Smart home hub → privacy firewall

Edge devices A local hub Cloud

Smart home app

“Privacy firewall”

@purpose: To measure device engagement.
WeeklyUsageHours{
 // operator [properties]
 inject [weekly] ->
 pull [smart TV driver] ->
 aggregate [sum duration] ->
 post [duration]
}

54

Peekaboo v.s. Firewall

Simpler functionality

Whitelist-only

Developer-in-the-loop

77% Apps do not
need raw data.

Pre-process users’ data

55

How Peekaboo works

Handle heterogeneous hardware with device drivers

Edge devices

Device
drivers

inject pull

aggregate post

Device APIs

56

How Peekaboo works

A fixed set of operators

Edge devices

video, image, audio, tabular, scalar

A
 fi

xe
d

se
t o

f o
pe

ra
to

rs

57

How Peekaboo works

An operator = A verb keyword

select
[row]

select
[face]

detect
[face]

58

How Peekaboo works

Operators are mapped to pre-loaded implementations

Row selection

Image cropping

select
[row]

select
[face]

59

How Peekaboo works

A small set of pre-processing algorithms improve privacy

Image cropping

video # duration name time …
aaa - - - -
bbb - - - -
… … … … …

25 hours/week
Row selection

60

Implementation (hardware)

Raspberry PI + TPUEdge devices Cloud

61

Implementation (software)

1. Operators: Node.JS package

2. Programming IDE: NodeRed

3. Drivers: 5 data types

4. 23 Preloaded implementations

62

Expressiveness (200+ smart home cases)

63

Data overaccess mitigation breakdown

unique manifests: 68

content selection: 64

explicit noisification: 57

conditional filtering: 51

cannot
mitigate3 push post

See details in
the paper

64

System performance

≈$100

25 inference/s

100 filtering/s

1-80 ms per request

65

Utility privacy tradeoff example

noisify <5% random pitch shift

6 speakers
112 audio files [1]

Speech word error rate:
9.27% → 11.88%

Speaker recognization:
100% → 27.7%

[1] CMU PDA Speech Database

incognito voice assistant

66

Developer studies

6 - 15 mins to
author a manifest

Task descriptions

IDE & Unit tests

67

Advantages

Manifests enforce fine-grained data collection

inject
[weekly]

pull
[smart tv]

aggregate
[sum duration]

post
[duration]

public, non-proprietary

@purpose: To measure device engagement.
WeeklyUsageHours{
 // operator [properties]
 inject [weekly] ->
 pull [smart TV driver] ->
 aggregate [sum duration] ->
 post [duration]
}

68

Advantages

Repetitive implementation and distributed interfaces

NestSamsung

Users?

Small
developers?

69

Advantages

Manifests → enforceable/dynamic privacy nutrition labels

@purpose: To measure device engagement.
WeeklyUsageHours{
 // operator [properties]
 inject [weekly] ->
 pull [smart TV driver] ->
 aggregate [sum duration] ->
 post [duration]
}

[1]

[1] Security and Privacy “Nutrition” Label, P. Emami-Naeini et al, IEEE S&P’20

70

Advantages

Built-in fine-grained control through manifest rewriting

inject
[weekly]

pull
[smart tv]

aggregate
[sum duration]

post
[duration]

inject
[monthly]

noisify
[3% noise]

Change the rate
to monthly

71

Revisit: The permission granularity dilemma

More fine-grained permissions
→ Better privacy
→ More management burden for users
 Harder learning curve for app developers
 More implementation efforts for system builders

More coarse-grained permissions
→ Worse privacy
→ Overaccess risks
 More users deny data requests
 More complaints for system builders
 Hard to gain trust from users for app developers

72

Revisit: The permission granularity dilemma

More fine-grained permissions.
→ Better default options.

Machine-readable permissions
→ Easier to audit.
→ Better ecosystem. Good privacy drive-out bad privacy.

→ Aggregated management.

Decomposable (operator-based) permissions.
→ Fast development.

Peekaboo

73

Developers

Regulators

Users

Privacy advocates

Let the good privacy drive out the bad privacy

1. Identify overaccess 2. Rank app developers
3. Independent privacy features

4. Free privacy features
5. Gain users’ trust

6. Centralized and unified management
7. Enforceable controls

74

MPF is a simpler compiler architecture.

Runtime

Manifest

Operators

Executable

A fixed set of operators

A trusted runtime with a small set
of pre-loaded implementations

Executable

Compiler

Syntax

Programs

75

Talk outline

1. Modular Privacy Flows (MPF) in a Nutshell

2. Why MPF

3. How MPF

4. When and when not MPF

5. Future Work

76

Recap:

Privacy as modular information flow

Users Developers

Who (which app) sends the data?
Where the data is being sent to?
What data is being collected?
Why the data is being collected?
How the data is being stored?

Flow-based programming

77

Future work:

Broader application domains

Peekaboo Smart City

Mobile apps? Chrome extensions?

Personal data API?

ChatGPT Plugin?

Social network?

78

MPF v.s. Binary permissions

<manifest ...>
 <uses-permission android:name="android.permission.
 ACCESS_COARSE_LOCATION" />
</manifest>

<manifest ...>
 <uses-permission android:name="android.permission.
 ACCESS_COARSE_LOCATION" />

 <uses-permission android:name="android.permission.
 ACCESS_FINE_LOCATION" />

 <!-- requesting background location access -->
 <uses-permission android:name="android.permission.
 ACCESS_BACKGROUND_LOCATION” />
</manifest>

Android Permission Manifest

Popup window

1. System implementation

2. API complexity

3. End-user management

79

MPF v.s. Database approaches (e.g., GraphQL)

1. Flexibility/Extendability

2. Auditability

SQL-like Queries

80

MPF v.s. Remote Code Execution

https://openpds.media.mit.edu/

Developer-uploaded
arbitrary code

1. Auditability

2. App development

3. Security

81

Modular Privacy Flows today is REST in 2000.

82

A story behind Modular Privacy Flows

Software-defined Cooking

83

84

A story behind Modular Privacy Flows

Software Defined
Hardware

+Operators +Runtime +Manifest

85

Talk outline

1. Modular Privacy Flows (MPF) in a Nutshell

2. Why MPF

3. How MPF

4. When and when not MPF

5. Future Work

86

Computing systems are increasingly complex, we
need something on the order of a single page
demonstrating that the system will work as
intended.

87

Mental models

The design of everyday things

88

The Gap

89

Our approach

90

Current research focus

Next generation permission system

Permission & Manifest

Privacy (P3P 2.0)
Security (Software

Supply Chain) AI Capability

Modular Privacy
Flows

91

Data Smith Lab is recruiting!

We study the security and privacy of data systems by

researching the people who design, implement, and use

these systems.

Contact: haojian@ucsd.edu
http://haojianj.in/

mailto:haojian@ucsd.edu
http://haojianj.in/

92

Acknowledgment

