
Haojian Jin - haojian@ucsd.edu Modular Privacy Flows1 short summary

A very short summary: Systems today often implement fine-grained data access control using all-or-
nothing binary APIs. Future systems may consider offering a small set of stateless data transformation
operators instead. Developers can connect these operators into a graph to customize desired data access,
save the graph as a text-based manifest, and upload the manifest to declare the data access.

Figure 1: If the user consents,
Google would allow Zoom to access
all her calendar data.

Computing systems often allow developers to access more data than
needed, violating the principle of data minimization - a data con-
troller should limit data collection to only what is necessary
to fulfill a specific purpose. For example, most calendar appli-
cations only allow users to grant third parties either full access to
all their calendar events or none (Fig. 1), even though third parties
often only need a small portion. Conventional wisdom is to ask
data controllers to offer many levels of data access permissions for
every potential use case (Fig. 2). However, enumerating all gran-
ularities of permissions would become onerous for system builders
(e.g., Google) to implement, unwieldy for users to configure, and
complex for developers (e.g., Zoom developers) to learn. For exam-
ple, a productivity tracking application, interested in knowing how
busy the user is, may want to request the number of daily business
meetings. Meeting scheduling tools interested in learning whether
a user is available (e.g., Doodle), only need to request the time
availability blocks.

Figure 2: Google calendar offers six types of data access for third parties to access users’ calendar data
information. The design of read/write/execute permissions is possibly inspired by the Unix file permissions.

This dissertation argues that the conventional design of all-or-nothing binary permissions (Fig. 2),
initially designed for security management, has become increasingly insufficient in managing privacy. First,
the binary permission approach works best with a small number of options (e.g., Unix file permissions).
But, managing privacy requires many fine-grained data access to capture the nuanced data collection/use
contexts (e.g., what data is being collected and why, how the data is being used). Second, data analysis
can subvert these binary permission systems easily. For example, Zoom can potentially use calendar data
to infer many insights about the user, such as income and education. Instead of always offering raw data,
systems should seek to process the raw data into less privacy-intrusive forms to reduce these unintentional
information leaks.

We introduce a new design pattern, called Modular Privacy Flows (MPF). MPF replaces these all-or-
nothing permissions with data collection manifests, which have three key ideas. First, developers must
declare all intended data collection behaviors in a text-based manifest (Fig. 3). Second, to specify the

1This document summarizes Haojian’s Ph.D. dissertation, ”Modular Privacy Flows: A Design Pattern for Data Minimiza-
tion.” It results from multiple-year discussions with Jason Hong, Swarun Kumar, Yuvraj Agarwal, Gram Liu, David Hwang,
and many others. This work was funded in part by Cisco, Intel, Infineon, the National Science Foundation, and Air Force
Research Laboratory.

mailto:haojian@ucsd.edu

data collection, developers choose from a small and fixed set of open-source, chainable, stateless operators
with well-defined data transformation semantics, authoring a stream-oriented pipeline similar to Unix pipes.
Third, a trusted runtime enforces the declared behaviors in the manifest, by running all of the pre-loaded,
open-source operators specified in the manifest.

selectZoom

type: select,

fields: [location, description],

operation: includes,

matches: .zoom.

@purpose: access calendar events with a Zoom link.

@pipeline: pullCalendar->selectZoom

@declare pullCalendar (

 type: “pull“,

 data: “calendar.events”

)

@declare selectZoom(

 type: “select“,

 fields: [“location”, “description”],

 operation: “includes”,

 matches: “.zoom.“

)

pullCalendar

type: pull

data: calendar.events

Assembled data processing pipelineA text-based manifest

Figure 3: Zoom developers can export the data processing pipeline as a text-based manifest (left) and
upload it to Google. Given a manifest, Google then assembles and executes a pre-processing pipeline
(right) using operators pre-loaded on the cloud, processing users’ calendar data before sending it to Zoom.

Combined, developers can reduce data collection by running data transformation tasks before accessing
users’ data. System builders can implement fewer APIs by reusing a small set of operators. This design
also makes the API easier for developers to learn. In addition, since each operator’s semantics is known and
the manifest is public, outsiders (e.g., regulators and privacy advocates) can quickly analyze developers’
data collection behaviors.

Further, MPF can enable many independent end-user privacy features without support from app devel-
opers. For example, a future calendar application may allow users to noisify the data provided to developers
by inserting additional data transformations into the pipelines specified by developers. Or the calendar
application and third-party privacy advocates can analyze the manifest and generate natural language
statements to make it easier for non-tech savvy users to understand what data will be sent out, when,
and to where. Finally, if services/apps/devices share a similar MPF protocol, we can enable a unified and
centralized privacy management interface for end-users.
BROADER APPLICATION DOMAINS. We can potentially apply MPF to many other contexts.

1. Browser extension. Browser extensions are much more dangerous than most people realize. Exten-
sions often have access to everything users do online, such as passwords, web browsing histories, and
more. Future browsers may consider adopting MPF and require all developers to submit a manifest
to access users’ data.

2. Personal data store. The zoom-google-calendar data access is an example of personal data store.
We can also apply MPF to email and wearable health data.

3. Smart home apps. Imagine a developer of a smart thermostat claims to only send aggregated
temperature history data to their servers once a week. How can outsiders validate this claim,
since the hardware, firmware, and backend servers are proprietary black-boxes? Future smart home
architectures may leverage an in-home hub to pre-process and minimize outgoing data through MPF.
App developers must declare all intended data collection behaviors in a text-based manifest, including
under what conditions data will be sent outside of the home to cloud services, where that data is
being sent to, and the granularity of the data itself. An in-home trusted hub mediates between
all devices in the home and the outside Internet. This hub enforces the declared behaviors in the
manifests, and also locally runs all of the operators specified in these manifests to transform raw
data before it is relayed to any cloud services.

4. Social network apps. The Facebook / Cambridge Analytica data scandal is another data access
design fiasco. While the initial app ”thisismydigitallife” built by Aleksandr Kogan only had 270
thousand participants, the app accessed the information of each participant’s friends, harvesting

data from up to 87 million Facebook users. Future social network apps may adopt MPF in designing
data access for third parties.

5. Mobile apps. Mobile apps are experiencing an explosion of permissions. Consider the case of
requesting mobile location data. There are three relevant permission dimensions: category (back-
ground or foreground), accuracy (fine-grained or coarse-grained), and user choices (”while using the
app” vs. ”only this time” vs. ”deny”). Further, developers may infer users’ location information
through network data (e.g., IP address, Wi-Fi MAC address). Applying MPF to mobile apps can
introduce two benefits. First, system builders can implement a small set of reusable operators to
compose many data permissions. Second, these manifests can enhance the privacy protection of
many data resources beyond GPS sensors. For example, instead of always sending developers the
raw IP, a manifest may preprocess the IP address into a more privacy-friendly format.

6. HTTP cookies. Targeted ads per se does not seem fundamentally evil, unless you think putting car
ads in car magazines is also evil. What makes many users uncomfortable is that the ad tech industry
tracks users’ online activity, inferring many insights that users are unaware of and using these insights
in unknown contexts. One alternative solution is that browsers may allow advertisers to access users’
attributes through MPF manifests. For example, browsers may introduce a set of operators which
can compute users’ interests using their local browsing history. Instead of tracking users using unique
IDs, advertisers can personalize the ad by querying the attributes computed locally.

--
FAQ

1. Why would developers adopt data minimization, since developers always want to collect more?
The Fogg Behavior Model shows that three elements must converge at the same moment for a behavior
to occur: Motivation, Ability, and a Prompt.

• Many privacy regulations, such as General Data Protection Regulation (GDPR), California Privacy
Rights Act (CCPA), and Fair Information Practice Principles (FIPPs), have required developers to
implement data minimization. Meanwhile, consumers are looking for products that better respect
their privacy.

• Developers today may feel that data minimization is not flexible. For example, at the time of data
collection, developers are often unaware of the analysis they want to do in the future. However,
this does not mean developers should collect and store all the data for unanticipated future usage.
Instead, we should seek new interaction paradigms and development supports to help developers
collect data on a need-to-know basis. For example, developers may update the MPF manifests
without users’ explicit permission. The ecosystem can rely on third-party auditors (e.g., consumer
reports, app store, GDPR) to actively search for wrongdoers through automated tools.

• Hopefully, a few developers will start to adopt data minimization. The transparency enabled by MPF
can create a virtuous cycle ecosystem where building trustworthy systems is rewarded, and developers
compete to guarantee greater user protection, not less.

2. OK. We plan to adopt data minimization, but why should we choose MPF?
Besides the fine-grained permission approach and MPF, there are two potential alternatives: GraphQL and
remote code execution. Table. 1 compares MPF with these three approaches. In the database approach,
the system may allow developers to author SQL-like queries (e.g., GraphQL) and create a SQL database
engine to interpret the declarative queries. MPF has two important advantages over this design: flexibility
and auditability. First, it is more flexible for the system builder to extend supported data transformations
by adding/removing/updating operator implementations, while modifying a database engine is non-trivial
for most organizations. Second, the pipeline approach is more verifiable than the database approach. The
runtime simply connects data transformation functions into a pipeline. Outsiders can verify the runtime
by verifying each operator’s pre-loaded implementation (open-sourced). In contrast, the complexity of a
database engine makes it hard to analyze and verify the engine’s behavior.

Another alternative design is that system builders may allow developers to upload code to transform
data. While this approach offers great flexibility for adding new data accesses, it is hard to enforce (i.e.,
analyze and control) the data transformation behaviors of these arbitrary programs. In contrast, MPF only

allows developers to specify data collection behaviors using a set of high-level operators with well-defined
semantics. So MPF can easily infer the program behaviors by analyzing the manifest and help users control
how their data would be collected by stopping undesired data flows.

Table 1: Tradeoffs of different data minimization implementations

Fine-grained permission MPF Database (e.g., GraphQL) Remote code execution
Flexible granularity ✓ ✓ x ✓

Easy development x ✓ ✓ x
Enforceable collection ✓ ✓ ✓ x

Auditability ✓ ✓ x x

3. How can a small set of operators represent numerous fine-grained APIs?
Each MPF operator is like an abstract class in Object-oriented programming, where each operator’s be-
haviors are determined by its properties. Further, all operator abstractions are verbs (e.g., select, pull,
detect), mapping to one type of stateless data transformation. For example, depending on the property
configurations, a select operator may select a row from a table, a face from an image, and speech from an
audio file. Although there might be multiple property options of the same operator, each operator’s input
and output semantics would be consistent. Using these operators to organize these implementations can
make it much easier to analyze the program behaviors.

Given the property specification in the manifest, the runtime then maps the operator to the corre-
sponding implementation and assembles the data transformation executable. Note that we do not need
to enumerate all potential data transformation implementations. A small set of simple and standard data
processing algorithms can significantly improve privacy protection. For example, simply aggregating tabular
data into a scalar number can eliminate many unnecessary privacy risks.

4. How about users? Do they have to read the manifests? How do they manage these fine-
grained permissions?
We do not expect users to read these manifests actively. Many studies find that users do not have the
expertise and time to manage even binary permissions. Our goal, instead, is to empower third-party
auditors and privacy advocates in the ecosystem and disincentivize wrongdoers.

We expect these manifests to be public, making it possible for first-party data providers (e.g., App
Store, Calendar apps) and third-party auditors (e.g., Consumer Reports) to analyze manifests program-
matically at scale. Users can also see if the required data granularity make sense, and flag items in a
review if they do not, block certain outgoing data, or choose not to install an app. Users do not need to
interact with these manifests individually. Instead, we expect many end-user-facing features built upon the
protocol to help users manage their privacy.

5. Any more questions?
Please contact Haojian Jin (haojian@ucsd.edu)

