Corona

Positioning Adjacent Device with AsymmetricCheng XuBluetooth Low Energy RSSI DistributionsKent Lyons

The devices remain independent even when they are just inches away.

radio

Received Signal Strength Indicator (RSSI)

RSSI	 -20	-25	-30	-35	-40	-45	-50	-55	-60	-65	-70	-75	-80	-90	-100	-110	-120	

Corona

Tracko

radio fingerprint

90 m

RSSI readings of iPhone from iPad

RSSI readings of iPhone from iPad

Why?

- 1. Off-center placement of the antenna
- 2. the antenna design
- 3. different material and shielding properties of the device.

asymmetric RSSI distribution

8

localization based on only two radios

- 1. adjacent in same plane
- 2. accuracy in centimeters
- 3. only two radios

Corona

a technique that implicitly locates the position of adjacent mobile devices placed in the same plane.

RSSI distributions are distinct between positions.

RSSI distributions at three positions along the device

infer the orientation with compass and gyro

RSSI distribution model

positioning around iPad

15

pheers: left-180 ground truth

0

90

3

3

Se p

Market

data collection

17

172,800 RSSI readings

Bayesian classification

19

discrete RSSI probability distribution

the possibility that RSSI x

P(x|c)

happens at a specific position:

 $= \frac{count(x)}{totalcount}$

bayesian classification

given the readings from iPhone and iPad and the possibility distributions: $c^* = \operatorname{argmax} P(c|X,Y)$ $P(c|X,Y) = \frac{P(X,Y|c)P(c)}{P(X,Y)}$ k m=0

k $P(X,Y|c) \sim \log\left(\prod P(x_m|c) * \prod P(y_m|c)\right)$ m=0

evaluation and results

evaluations with aligned positions

data collection

= 2,160predictions

evaluations with aligned positions

orientation: 0°

0 0 0 0 0 0 0 0 0 $\mathbf{0}$ 0 0 0 0 2 0 100 0 0 2 0 100 3-0 0 100 0 0 0 3 0 0 100 0 0 0 0 0 0 0 0 0 0 4 0 6 0 0 0 0 0 0 0 0 4-0 0 0 100 0 0 0 0 0 5 - 0 5 0 0 0 6 0 0 0 6 0 0 0 0 ediction 7_0_0 - 0 0 0 0 0 0 3 5 0 0 0 0 0 42 0 1 0 0 0 7 0 0 96 0 0 0 0 0 0 0 0 0 0 0 0 8 - 0 0 0 8-0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 - 0 0 9-0 0 0 0 9-0 0 0 \cap 100 0<u>d</u> 10 - 0 10-0 0 10-0 0 0 0 -0 0 0 0 0 0 0 0 100011-0 0 0 11 0 11-0 0 0 0 100 0 0 0 0 0 0 0 0 0 100 0 0 0 0 100 0 -0 0 0 0 0 0 12-0 0 0 0 3 97 0 0 0 12-0 0 0 0 0 0 0 0 10 90 0 0 0 0 12-0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 100 0 0 13-0 0 0 0 100 0 0 0 13-0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 - 0 14-0 0 0 100 0 0 14 0 33 0 0 0 0 0 0 0 \cap 0 18 0 0 0 0 \cap 0 0 0 0 0 0 0 0 0 - 0 15-0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 15-0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0 0 0 <u>0 0 0 0</u> 16-30 0 100 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 5 6 8 9 10 11 12 13 14 15 16 4 5 6 8 9 10 11 12 13 14 15 16 4 truth truth truth

orientation: 90°

orientation: 180°

orientation: 270°

ambiguity areas

orientation: 180° 0 100 0 0 0 0 0 0 0 100 0 0 0 0 0 100 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 33 0 0 100 0 0 0 10 11 12 13 14 15 16

truth

evaluations with unaligned positions

position interpolation

linear interpolation of adjacent candidates with top scores

$$c_{final} = \frac{c^* * P(X|c^*) + c_{next} * P}{P(X|c^*) + P(X|c_{next})}$$

 $P(X|c_{next})$

evaluations with unaligned positions

evaluations with unaligned positions

Orientations	Top-1
0 °	63.75%
90 °	41.79%
180°	50.87%
270°	50.92%

Top-2 90.14% 79.48% 88.84% 85.32%

handle ambiguity areas

orientation: 180° 0 0 0 0 0 0 0 0 0 0 0 0 0 0 $\mathbf{0}$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 100 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 33 0 0 100 0 0 0 0 0 0 10 11 12 13 14 15 16

truth

sensor fusion in application

ambiguity

most ambiguity happens on different sides.

ambiguity

the movement direction sides or short sides

determines the device on long

ambiguity

future work

generalizability

1. Other devices of the same type

same plane in the air

more angles than the same plane

Corona

Haojian Jin, Cheng Xu, Kent Lyons http://www.shift-3.com haojian.jin@gmail.com

