WiSh

a generic solution makes ordinary surfaces shape-aware.

using low-cost, waterproof, lightweight, battery-free RFIDs

WiSh Towards a <u>Wi</u>reless <u>Sh</u>ape-aware World using Passive RFIDs

Haojian Jin* Jingxian Wang* Zhijian Yang Swarun Kumar Jason Hong

Carnegie Mellon University

How can we **design** a **responsive** world?

WiSh makes ordinary surfaces **shape-aware** using **low-cost**, light weight, waterproof, battery-free RFID tags.

Such a system can fundamentally change the way we interact with our daily environment.

Interactive Toys

Smart Carpets

Such a system can fundamentally change the way we interact with surfaces in our vicinity.

Interactive Toys

Smart Carpets

Such a system can fundamentally change the way we interact with surfaces in our vicinity.

Interactive Toys

Smart Carpets

Such a system can fundamentally change the way we interact with surfaces in our vicinity.

Interactive Toys

Smart Carpets

Instrument surfaces with RFID tags

Interactive Toys

Smart Carpets

Knowing the shape can enable so many applications

Knowing the shape can enable so many applications

How can we sense the shape today?

External infrastructure

Lidar

Sensing Setup

Shape output

Lidar imaging of topography, NASA

External infrastructure

external sensors need to be static

surfaces need to be in direct line-of-sight

subjected to the lighting environment

Lidar

Lidar imaging of topography, NASA

Smart Fabrics & Materials using Specialized Sensors

Sensortape, UIST 2015

Smart Fabrics & Materials using Specialized Sensors

require battery/power

expensive, \$100 per meter (SensorTape)

delicate electronic sensors, not waterproof

Sensortape, UIST 2015

non-line-of-sight objects, mobile, ad-hoc

battery-free surfaces, durable, cheap

V.S.

V.S.

Prior solutions

WiSh

a generic solution makes ordinary surfaces shape-aware.

using low-cost, waterproof, lightweight, battery-free RFIDs

Infer the curve shape by sensing the tags on the surface.

WiSh Key Primitives

Reverse the architecture: mobile readers & stationary tags

massive passive RFID tags

a mobile reader

Reverse the architecture: mobile readers & stationary tags

massive passive RFID tags

a mobile reader under the vehicle

intuition

RFID backscatter communication for shape sensing

How can we **reconstruct** the curve shape from the RFID backscatter observations?

Data driven

FlexSense [UIST 2014]

Triangulation

Tagoram [MOBICOM 2014]

Data driven

FlexSense [UIST 2014]

FlexSense [UIST 2014]

unknown antenna positions

unknown reflectors

Triangulation

Tagoram [MobiCom 2014]

Multi-antenna solutions cannot be mobile.

Only one antenna at an unknown position.

Tagoram [MOBICOM 2014]

Shape sensing is a special problem

Only one mobile antenna at an unknown position

Unknown multi-path reflectors

negative side

Shape sensing is a special problem

Only one mobile antenna at an unknown position

Unknown multi-path reflectors

negative side

Instrument RFID tags in a planned pattern

Surfaces in the real world are not arbitrary geometries

positive side

Solution overview

Shape representation

reduce the number of unknown variables

Shape modeling

overcome multipath

Shape optimization

solution search

shape representation

system design

WiSh models the surface through tags

33

WiSh models the surface through tags

if we know the tag positions, we can reconstruct the curve.

WiSh models the surface through tags

We only have 1 measurement per tag, but we have 2 variables per tag.

RFID tags on the real-world curve

Tags are constrained to the surface, so their positions are not independent.
Parametric Bézier curve

$$S(p = \{\mathbf{C}_i\}, t) = \sum_{i=0}^n \binom{n}{i} (1-t)^{n-i} (t)^i \mathbf{C}_i$$

 C_2

shape primitive representations

5 unknown variables for each curve primitive

Shape representation

shape representation

shape modeling

0

unknown tag positions

at an unknown position

ll.

unknown tag positions

at an unknown position

start with a random shape guess

The guess most likely is wrong. But how wrong the guess is?

A random shape guess

Wireless channel observations

Wireless channel observations

Angle of arrival (AoA) estimation

Residual

0

If the shape prediction is perfect, the residual would be 0.

at an unknown position

(1)

Multipath environment

unknown tag positions

at an unknown position

Multipath environment

Two signals: reader & reflector

Two peaks in arrival of angles estimation

shape representation

shape modeling

shape optimization

system design

Input: One wireless channel observation for each individual tag

Shape modeling: Evaluate the goodness-of-fit of any individual surface

Goal: The shape representation

Input: One wireless channel observation for each individual tag

Shape modeling:

Evaluate the goodness-of-fit of any individual surface

Brute force search?

Input: One wireless channel observation for each individual tag

Shape modeling:

Evaluate the goodness-of-fit of any individual surface

DNA:

Initialization:

Natural selection:

The Next Generation:

DNA: the unknown shape parameters: x₁, y₁, x₂, y₂, x₃

$$C_0 x_0 = 0, y_0 = 0$$

 $C_1 \quad X_1 \quad , Y_1$

C₂ x₂ , y₂

 $C_3 \quad x_3 \quad , y_3 = 0$

 C_0

DNA: the unknown shape parameters

Initialization: randomly generate n shapes.

DNA: the unknown shape parameters

Initialization: randomly generate n shapes.

Natural selection: eliminate candidates that poorly fit the observed channel.

DNA: the unknown shape parameters

Initialization: randomly generate n shapes.

Natural selection:

eliminate shapes that poorly fit the observed channel.

The Next Generation:

cross-over: average DNAs to result in a hybrid shape. mutation: randomly alters the DNAs.

Initialization: randomly generate n shapes.

eliminate shapes that poorly fit the observed channel.

The Next Generation:

cross-over: average DNAs to result in a hybrid shape. mutation: randomly alters the DNAs.

Curve => surface

the production of two orthogonal Bézier curves

surface stitching for large complex surfaces

material modeling: stiffness & elasticity

RFID tag orientations

system design

See details in our paper.

evaluation Tag spacing, Multipath, Fabric materials, Stress

WiSh prototypes

Tags on cotton surface

Tags on rubber surface

rubber string

ground truth

A camera-based fiducial tracking system

72

Microbenchmark: tag spacing

3 string prototypes with different tag spacings 18 tags, 2cm spacing 13 tags, 3cm spacing 10 tags, 4cm spacing

3 types of shapes:

concave, convex, and wave-like.

3 shapes X 3 shapes = 9 configuration: 500+ shape predictions for each config

results: individual shape predictions

74

results: an individual shape prediction

results: an individual shape prediction

Evaluation metrics: mean distance offset

results: overall stats

Evaluation metrics:

mean distance offset

an average error distance between 1.3 and 1.9 cm.

results: multipath

all configurations have high quality predictions.

an average offset between 1.1 and 2.3 cm.

different materials & stress => See paper

Bend Stretch Bend + Stretch D String 1=1-1-2D Surface and a second and a 5.7 illes 1 52 1144 · · · · | | | | | | 1000

applications

Bridges, 3D Touch screen, Spine posture, Breath, Smart carpet,

Shape-aware bridges

One in 4 US highway bridges are in need of serious repair.

Visual inspections are costly.

massive passive RFID tags

388-meter long suspension bridge Pittsburgh 10th Street Bridge

GR .

Shape sensing tape

50 tags on a 5-meter string

with an evenly 7cm tag spacing

A programmable robot drags the tape at a constant speed.

A programmable robot drags the tape along the sidewalk at a constant speed.

RFID 3D Touch screen

turning any soft object (e.g. toys, walls, etc.) into an interactive surface.

laser cut an 40 cm x 20 cm acrylic frame wrap the frame with a latex rubber surface place 35 RFID tags on the back

~	82.8	6.3	2.3	1.5	0.8	5.3	0.6	0.5	0.0	0.0
5	3.2	88.9	1.7	1.1	0.6	0.6	3.7	0.2	0.0	0.0
S	0.0	3.4	85.0	3.3	1.6	1.2	0.8	4.2	0.5	0.0
ber 4	0.1	0.7	1.5	90.0	2.5	0.9	0.8	0.5	2.6	0.3
y Number 5 4	0.3	0.7	2.2	2.9	86.6	2.4	1.2	0.5	0.4	2.9
Actual Key 7 6	1.5	0.0	0.6	0.7	2.4	91.3	2.0	1.0	0.4	0.0
ACI 7	0.1	2.0	1.0	0.7	0.8	2.7	88.7	2.3	1.1	0.5
∞	0.0	0.2	2.9	1.0	0.8	2.5	3.4	85.6	2.8	0.8
0	0.0	0.2	0.5	3.3	1.2	1.5	1.3	3.8	85.0	3.1
10	0.0	0.2	0.4	0.6	4.7	2.4	2.1	2.5	4.7	82.4
1 2 3 4 5 6 7 8 9 10 Predicted Key Number										

touch prediction 87%

RFID 3D Touch screen

limitations

Wrinkles, folds, latency

Limitations

Wrinkles & folds WiSh cannot model small curvatures & folds.

Sensing and Computational Latency Raw signal refresh rate: 30 Hz; Computing refresh rate: 2 Hz.

WiSh Towards a <u>Wi</u>reless <u>Sh</u>ape-aware World using Passive RFIDs

Haojian Jin* Jingxian Wang* Zhijian Yang Swarun Kumar Jason Hong

Carnegie Mellon University

